7,824 research outputs found

    Synchronization in fiber lasers arrays

    Full text link
    We consider an array of fiber lasers coupled through the nearest neighbors. The model is a generalized nonlinear Schroedinger equation where the usual Laplacian is replaced by the graph Laplacian. For a graph with no symmetries, we show that there is no resonant transfer of energy between the different eigenmodes. We illustrate this and confirm our result on a simple graph. This shows that arrays of fiber ring lasers can be made temporally coherent

    Theoretical insights into the RR Lyrae K-band Period-Luminosity relation

    Full text link
    Based on updated nonlinear, convective pulsation models computed for several values of stellar mass, luminosity and metallicity, theoretical constraints on the K-band Period-Luminosity (PLK) relation of RR Lyrae stars are presented. We show that for each given metal content the predicted PLK is marginally dependent on uncertainties of the stellar mass and/or luminosity. Then, by considering the RR Lyrae masses suggested by evolutionary computations for the various metallicities, we obtain that the predicted infrared magnitude M_K over the range 0.0001< Z <0.02 is given by the relation MK=0.568-2.071logP+0.087logZ-0.778logL/Lo, with a rms scatter of 0.032 mag. Therefore, by allowing the luminosities of RR Lyrae stars to vary within the range covered by current evolutionary predictions for metal-deficient (0.0001< Z <0.006) horizontal branch models, we eventually find that the infrared Period-Luminosity- Metallicity (PLZK) relation is MK=0.139-2.071(logP+0.30)+0.167logZ, with a total intrinsic dispersion of 0.037 mag. As a consequence, the use of such a PLZK relation should constrain within +-0.04 mag the infrared distance modulus of field and cluster RR Lyrae variables, provided that accurate observations and reliable estimates of the metal content are available. Moreover, we show that the combination of K and V measurements can supply independent information on the average luminosity of RR Lyrae stars, thus yielding tight constraints on the input physics of stellar evolution computations. Finally, for globular clusters with a sizable sample of first overtone variables, the reddening can be estimated by using the PLZK relation together with the predicted MV-logP relation at the blue edge of the instability strip (Caputo et al. 2000).Comment: 8 pages, including 5 postscript figures, accepted for publication on MNRA
    • …
    corecore